Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map.

Identifieur interne : 004240 ( Main/Exploration ); précédent : 004239; suivant : 004241

Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map.

Auteurs : T M Yin [États-Unis] ; S P Difazio ; L E Gunter ; D. Riemenschneider ; G A Tuskan

Source :

RBID : pubmed:15168022

Descripteurs français

English descriptors

Abstract

We report the most complete genetic map to have been constructed for the genus Populus. This map includes 544 markers mapped onto 19 linkage groups, equivalent to the Populus chromosome number, with all markers displaying internally consistent linkage patterns. We estimate the genome length to be between 2,300 and 2,500 cM, based both on the observed number of crossovers in the maternal haplotypes, as well as the total observed map length. Genome coverage was estimated to be greater than 99.9% at 20 cM per marker. We did not detect obvious recombination repression in the maternal tree (a hybrid of Populus trichocarpa Hooker x P. deltoides Marsh.) compared to the paternal tree (pure P. deltoides). Finally, most markers exhibiting segregation distortion were derived from the donor parent in this backcross, and generally occurred in large contiguous blocks on two linkage groups. We hypothesize that divergent selection has occurred on chromosomal scales among the parental species used to create this pedigree, and explore the evolutionary implications of this observation. This genetic linkage map provides the most comprehensive view of the Populus genome reported to date and will prove invaluable for future inquiries into the structural and functional genomics, evolutionary biology, and genetic improvement of this ecologically important model species.

DOI: 10.1007/s00122-004-1653-5
PubMed: 15168022


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map.</title>
<author>
<name sortKey="Yin, T M" sort="Yin, T M" uniqKey="Yin T" first="T M" last="Yin">T M Yin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Difazio, S P" sort="Difazio, S P" uniqKey="Difazio S" first="S P" last="Difazio">S P Difazio</name>
</author>
<author>
<name sortKey="Gunter, L E" sort="Gunter, L E" uniqKey="Gunter L" first="L E" last="Gunter">L E Gunter</name>
</author>
<author>
<name sortKey="Riemenschneider, D" sort="Riemenschneider, D" uniqKey="Riemenschneider D" first="D" last="Riemenschneider">D. Riemenschneider</name>
</author>
<author>
<name sortKey="Tuskan, G A" sort="Tuskan, G A" uniqKey="Tuskan G" first="G A" last="Tuskan">G A Tuskan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15168022</idno>
<idno type="pmid">15168022</idno>
<idno type="doi">10.1007/s00122-004-1653-5</idno>
<idno type="wicri:Area/Main/Corpus">004259</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004259</idno>
<idno type="wicri:Area/Main/Curation">004259</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004259</idno>
<idno type="wicri:Area/Main/Exploration">004259</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map.</title>
<author>
<name sortKey="Yin, T M" sort="Yin, T M" uniqKey="Yin T" first="T M" last="Yin">T M Yin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Difazio, S P" sort="Difazio, S P" uniqKey="Difazio S" first="S P" last="Difazio">S P Difazio</name>
</author>
<author>
<name sortKey="Gunter, L E" sort="Gunter, L E" uniqKey="Gunter L" first="L E" last="Gunter">L E Gunter</name>
</author>
<author>
<name sortKey="Riemenschneider, D" sort="Riemenschneider, D" uniqKey="Riemenschneider D" first="D" last="Riemenschneider">D. Riemenschneider</name>
</author>
<author>
<name sortKey="Tuskan, G A" sort="Tuskan, G A" uniqKey="Tuskan G" first="G A" last="Tuskan">G A Tuskan</name>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="ISSN">0040-5752</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosome Segregation (genetics)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>Genetic Markers (genetics)</term>
<term>Genome, Plant (MeSH)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Polymorphism, Restriction Fragment Length (MeSH)</term>
<term>Populus (genetics)</term>
<term>Recombination, Genetic (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cartographie chromosomique (MeSH)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Marqueurs génétiques (génétique)</term>
<term>Polymorphisme de restriction (MeSH)</term>
<term>Populus (génétique)</term>
<term>Recombinaison génétique (génétique)</term>
<term>Ségrégation des chromosomes (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Genetic Markers</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromosome Segregation</term>
<term>Populus</term>
<term>Recombination, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Marqueurs génétiques</term>
<term>Populus</term>
<term>Recombinaison génétique</term>
<term>Ségrégation des chromosomes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Crosses, Genetic</term>
<term>Genome, Plant</term>
<term>Hybridization, Genetic</term>
<term>Polymorphism, Restriction Fragment Length</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartographie chromosomique</term>
<term>Croisements génétiques</term>
<term>Génome végétal</term>
<term>Hybridation génétique</term>
<term>Polymorphisme de restriction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report the most complete genetic map to have been constructed for the genus Populus. This map includes 544 markers mapped onto 19 linkage groups, equivalent to the Populus chromosome number, with all markers displaying internally consistent linkage patterns. We estimate the genome length to be between 2,300 and 2,500 cM, based both on the observed number of crossovers in the maternal haplotypes, as well as the total observed map length. Genome coverage was estimated to be greater than 99.9% at 20 cM per marker. We did not detect obvious recombination repression in the maternal tree (a hybrid of Populus trichocarpa Hooker x P. deltoides Marsh.) compared to the paternal tree (pure P. deltoides). Finally, most markers exhibiting segregation distortion were derived from the donor parent in this backcross, and generally occurred in large contiguous blocks on two linkage groups. We hypothesize that divergent selection has occurred on chromosomal scales among the parental species used to create this pedigree, and explore the evolutionary implications of this observation. This genetic linkage map provides the most comprehensive view of the Populus genome reported to date and will prove invaluable for future inquiries into the structural and functional genomics, evolutionary biology, and genetic improvement of this ecologically important model species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15168022</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>10</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0040-5752</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>109</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2004</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor Appl Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map.</ArticleTitle>
<Pagination>
<MedlinePgn>451-63</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We report the most complete genetic map to have been constructed for the genus Populus. This map includes 544 markers mapped onto 19 linkage groups, equivalent to the Populus chromosome number, with all markers displaying internally consistent linkage patterns. We estimate the genome length to be between 2,300 and 2,500 cM, based both on the observed number of crossovers in the maternal haplotypes, as well as the total observed map length. Genome coverage was estimated to be greater than 99.9% at 20 cM per marker. We did not detect obvious recombination repression in the maternal tree (a hybrid of Populus trichocarpa Hooker x P. deltoides Marsh.) compared to the paternal tree (pure P. deltoides). Finally, most markers exhibiting segregation distortion were derived from the donor parent in this backcross, and generally occurred in large contiguous blocks on two linkage groups. We hypothesize that divergent selection has occurred on chromosomal scales among the parental species used to create this pedigree, and explore the evolutionary implications of this observation. This genetic linkage map provides the most comprehensive view of the Populus genome reported to date and will prove invaluable for future inquiries into the structural and functional genomics, evolutionary biology, and genetic improvement of this ecologically important model species.</AbstractText>
<CopyrightInformation>Copyright 2004 Springer-Verlag</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>T M</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>DiFazio</LastName>
<ForeName>S P</ForeName>
<Initials>SP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gunter</LastName>
<ForeName>L E</ForeName>
<Initials>LE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riemenschneider</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tuskan</LastName>
<ForeName>G A</ForeName>
<Initials>GA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>05</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="Y">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020090" MajorTopicYN="N">Chromosome Segregation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="Y">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="N">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2003</Year>
<Month>08</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>02</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15168022</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-004-1653-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2001 Jun;158(2):787-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11404342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1993 Nov;53(5):1137-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8213837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1999 Jun;98(8):1279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12238515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Oct;153(2):965-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10511571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1994 Oct;89(2-3):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24177824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1991 Dec;83(2):173-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24202355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Apr;106(6):1075-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 Nov 11;23(21):4407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7501463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1992 Nov;14(3):604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1427888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1988 Dec;120(4):947-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2906309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Feb;154(2):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Dec;144(4):1331-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8978022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Apr;145(4):1139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9093864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Dec;159(4):1701-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1987 Oct;1(2):174-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3692487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2001;35:31-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11700276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2001 Nov;91(11):1069-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1994 Jun;88(3-4):289-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24186008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 May;8(5):823-830</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Feb;139(2):963-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7713445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Feb;104(2-3):214-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1982 Nov;34(6):842-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6960692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1974 Mar;76(3):477-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4208857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Nov;144(3):1205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8913761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1993 Apr;86(2-3):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24193473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Feb;154(2):857-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Nov;14(11):2651-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Dec;90(6):681-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12451023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2001 Aug;44(4):602-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11550894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Sep;105(4):622-628</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1996 Oct;50(5):1871-1878</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jan;42(1):205-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2000 Mar;66(3):1107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 May 3;272(5262):741-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1981 Jan;35(1):124-138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Hum Genet. 2001 Feb;9(2):130-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11313746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2002 Jun;45(3):541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12033623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1990 May;125(1):183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2341030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Nov-Dec;8(6):886-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8664498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2002 Jan-Feb;93(1):77-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Dec;22(18):1273-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12490424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Aug;137(4):1121-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7982566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2003 Apr;14(2):206-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1991 May;128(1):175-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2060775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2000 Jun;54(3):798-814</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10937254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Jul;55(7):1325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1983 May;37(3):454-471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2002;18:81-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12142268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Aug 30;412(6850):904-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11528477</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Difazio, S P" sort="Difazio, S P" uniqKey="Difazio S" first="S P" last="Difazio">S P Difazio</name>
<name sortKey="Gunter, L E" sort="Gunter, L E" uniqKey="Gunter L" first="L E" last="Gunter">L E Gunter</name>
<name sortKey="Riemenschneider, D" sort="Riemenschneider, D" uniqKey="Riemenschneider D" first="D" last="Riemenschneider">D. Riemenschneider</name>
<name sortKey="Tuskan, G A" sort="Tuskan, G A" uniqKey="Tuskan G" first="G A" last="Tuskan">G A Tuskan</name>
</noCountry>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Yin, T M" sort="Yin, T M" uniqKey="Yin T" first="T M" last="Yin">T M Yin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004240 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004240 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15168022
   |texte=   Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15168022" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020